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Q U A S I T R A N S V E R S E  S H O C K  WAVES IN E L A S T I C  M E D I A  

W I T H  A N  I N T E R N A L  S T R U C T U R E  

N. I. Gvozdovskaya and A.  G. Kulikovskii  UDC 539.4:537.6 

We consider the structure of  small-amplitude quasitransverse shock waves in a weakly 
anisotropic elastic medium which possesses an internal structure generating the wave dispersion. 
The dispersion is modeled by introducing terms with higher derivatives into the equations of 
the theory of elasticity, and the dissipation is represented by viscous terms. In one of the two 
possible cases treated below, the requirement that the discontinuity structure ezist leads to a 
set of  admissible discontinuities of complez structure. A considerable part of  the shock adiabat 
consists of  a set of short portions and separate points, the number of  which increases as the 
viscosity decreases. This complez set of admissible discontinuities is the general case where the 
dispersion in the shock-wave structure is sufficiently strong. 

Basic Equa t ions .  We consider nonlinear quasitransverse waves in an elastic medium with an internal 
structure (for instance, in a composite). As compared to an ordinary elastic body, whose motion is described 
by hyperbolic equations, the presence of the internal structure and the corresponding internal geometrical 
scales results in the appearance of additional terms with higher derivatives in a system of equations which 
ensure the wave dispersion [1]. 

To take into account the effect of dissipative processes, the terms which describe the viscosity forces are 
introduced into the equations of motion. For large-scale phenomena, these additional dispersive and viscous 
terms are small, and the waves can be described by the equations of the theory of elasticity. However, these 
terms (see below) can play an important role in describing the structure of discontinuities, in determining the 
set of admissible discontinuities, and, consequently, in constructing the solutions of the problems. 

As in [2, 3], we use the following assumptions: 
(a) All the quantities depend on time t and the Cartesian coordinate x3 (below, the subscript 3 is 

omitted); 
(b) The nonlinearity is weak; 
(c) The anisotropy in the wave plane (the wave anisotropy) is weak. 
We write the equations of the theory of elasticity for the quasitransverse waves without the dispersive 

and viscous terms, taking into account that the adopted assumptions eliminate the longitudinal motions from 
the system of equations. Moreover, this system and the discontinuity relations are written in the form of the 
equations of motion for an equivalent incompressible medium: 

Ovi O ( O H )  Oui Ovi 
Po ot Oz..  =~  Ot Oz = ~ i = 1 , 2 ;  (1) 

[v,] + W[u,] = o, 
(2) 

1 2 1 + u )2. 
H = -~f(u 1 + u~) + - - 
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Here ui = Owi/Ox (wi is the displacement of the medium along the Cartesian xi axis orthogonal to the x axis) 
and W is the discontinuity velocity; the constants 9 > 0 and ~e characterize the anisotropy and nonlinearity, 
respectively; the terms in Eqs. (1) and (2) containing these constants are assumed to be small in comparison 
with other terms, which correspond to a linear isotropic medium, and the square brackets in (2) denote the 
jump of the bracketed quantity: the difference between the values behind and before the jump. 

Equations (1) with discontinuity conditions (2) is a hyperbolic model that describes large-scale 
phenomena. 

In passing to a complete system of equations that  takes into account the dispersion and dissipation, 
we use the additional assumption: 

(d) The dispersive and viscous terms axe small and do not exceed the nonlinear terms in order of 
magnitude for the solutions considered. 

As factors the dispersive terms contain the higher derivatives of ui with respect to x and since they are 
assumed to be small, we neglect the change in their coefficients, i.e., we will consider these terms in the linear 
approximation. Moreover, we confine ourselves to terms containing derivatives with respect to x of order not 
greater than the third order, since in the longwave (compared to the internal geometrical scale of the medium) 
solutions considered below, the magnitudes of the derivatives decrease as their order increases. The longwave 
character (the large spatial scale) of the solutions under consideration is due to the small nonlinearity. This 
property will be obvious in treating the problem of the structure of discontinuities. 

It follows from [1] that the dispersive terms can be represented by introducing, into the first pair of 
equations (1), terms with third-order derivatives of ui with respect to x or terms with second-order derivatives, 

" = 02uj/Oz 2, and bij is a 2 x 2 asymmetric which can enter the equations of motion in the form biju~, where u 1 
matrix (precisely this form of matrix ensures dispersion in the absence of dissipation). The terms bijut~ axe 
the components of the two-dimensional vector. For the asymmetric matrix bij ,  this vector can be written 
as u"  • b, where u = ulel  + u2e2 and b is the pseudovector directed along the x axis. We note that the 
expression u" • b is the vector in the only case where b is the pseudovector. 

Thus, for the dispersion terms with second-order derivatives to enter the equations of motion, it is 
necessary to introduce the pseudovector in the formulation of the problem. This situation arises during the 
propagation of a nonlinear electromagnetic wave in a magnet [4] when the initial magnetic field can be 
considered as a pseudovector. 

In this paper, we consider the case where there are no pseudovectors in the formulation of the problem, 
so that the dispersive terms are represented by terms with third-order derivatives mijO3uj/Ox 3, where mij = 

const. If the wave anisotropy is ignored, they can be written in the form r n O 3 u i / O z  3 = mO4wi/Ox 4. 
It should be noted that terms of this type with m > 0 enter into the left-hand sides of the equations of 

motion, for example, in the case where a readily deformable homogeneous elastic medium contains uniformly 
distributed rigid rods with sufficient flexural rigidity which are parallel or make a small angle with the x axis. 

Moreover, we assume that  the dissipative processes are represented by the viscous terms/~02vi/Oz z 
(/~ =cons t  > 0), which enter the left-hand side of the first group of Eqs. (1) with the minus sign. The viscous 
terms are assumed to be small and, therefore, we write them in isotropic form. Thus, the complete system of 
equations suitable for describing the discontinuity structure can be written in the form 

Ovi 0 ( O H )  03ui 02Vi OUi OVi 
po a t  + m-Y z3 - "T -i 2 = o, o t  o---; = o. (3) 

A P r i o r i  E v o l u t i o n .  T h e  P r o b l e m  of  t h e  Shock -Wave  S t r u c t u r e .  For the case rn = 0, i.e., 
dispersion is absent and only the viscosity is taken into account, the structure of shock waves was studied in 
[3, 5]. It was shown that  the structure corresponds to all a priori evolutionary discontinuities. We call the 
discontinuities which are evolutionary [6] under the assumption that they satisfy only (2), a priori evolutionary 
relations. The evolutionary conditions are written in the form of a system of inequalities between the shock- 
wave velocity W and the velocities of the characteristics of system (1) c~" and c 2 and c + and c + in front of 
and behind the discontinuity. 

The evolutionary conditions are shown in Fig. 1, where the velocity values are laid off along the axes. 
Each point in the diagram corresponds to the discontinuity, for which certain inequalities for W, c~,z, and c + 1,2 
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are satisfied. The points in the bold rectangles refer to the a pr ior i  evolutionary discontinuities; moreover, 
the left bottom rectangle corresponds to slow shock waves, and the right upper rectangle to fast shock waves. 
The shock adiabat calculated by relations (2) is mapped onto the evolutionary diagram [2, 3]. 

We consider the effect of dispersion on the structure and the set of admissible discontinuities. We find 
the bounded solutions of system (3), which depend on ~ = z - W t .  After a single integration of each equation 
from the first pair of equations and the elimination of vi, system (3) takes the form 

OF 
" ' ( i  = 1, 2) ,  m u i + g W u  i = c3ui 

(4) 
1 2 1 2 ze 2 

F = "~(poW - f ) ( u ~  + u~) - -~g(u 2 - u~) + ~-(u 1 + u22) 2 + A1u l  + A2u2,  

where Ai are the integration constants, which can be found from the condition that  c3F/cgui = 0 for the state 
in front of the discontinuity ui = u~', and the primes denote derivatives with respect to ~. 

Equations (4) have the form of the equations of motion of a material point of mass m with the friction 
proportional to the velocity in the potential force field determined by the potential energy F.  The variable 
plays the role of time. We use this analogy to obtain certain qualitative inferences on the structure and the 
set of admissible discontinuities. A more detailed investigation requires numerical methods. 

It is worth noting that  W can be found from the relation for discontinuity (2) independently of the 
existence of the structure and, consequently, the parameters m and/z, which determine this structure. 

For a specified function F and value of W, the integral curves of system (4) and, consequently, the 
existence of the structure are determined by the ratio ~/v/'m, which characterizes the relation between the 
viscous and dispersive terms in the equations. For simplicity, we confine ourselves to the case of small values 
of G = g / R  2, where R 2 = (u]-) 2 + (u~') 2. 

T h e  case ze > 0. If we set 9 = 0 and Ai = 0, the function F(ul,u2) for poW 2 < f has the form 
of a ring groove, whose outer wails go upward unlimitedly, and, for ul = 0 and u2 = 0, the local maximum 
occurs. If g # 0 and A i  = 0, the groove depth is variable and the groove has two local minima separated by 
two saddle points. The local maximum in the central part is preserved. For small Ai,  the number and type of 
stationary point do not change. 

The stationary points of the function F ( u l ,  u2) ,  together with equalities u~ = 0, determine the singular 
points of system (4) and can correspond to the states for ~ = 4-00. The cases where there are five stationary 
points are of special interest. This situation can occur when, for example, c]- < W < c~'. In this case, the 
vertical line W = const in Fig. l a  can intersect the shock adiabat at four points: B, C, N, and M. In the ul, u2 
plane, the points B, C, N, and M of the shock adiabat correspond to the stationary points of the function F 
(Fig. 2). Moreover, there is a stat ionary point A which refers to the initial state (in Fig. 2, the groove is shown 
by the dashed curve). In the case under consideration, the point M is the maximum point, B and C are the 
minimum points, and N and A are the saddle points. The projection of the integral curves belonging to the 
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four-dimensional space Ul, u2, u~, and u S on the Ul, u2 plane are the trajectories of motion of a material point 
which moves with friction over the surface given by the graph F(ul ,  u2). The discontinuity structure with a 
state before the discontinuity which is specified by the point A is represented by the trajectory that arrives 
at the point A as ~ ---* r162 and originates with zero velocity u~ = 0 and u S = 0 from one of the critical points 
B, C, M, and N, the last point corresponding to the state behind the discontinuity. 

Obviously, the integral curves which originate from the minimum points of the potential energy B or 
C with zero velocities u~ = 0 and u S = 0 cannot exist, i.e., the structure of the nonevolutionary shock waves 
A ~ B and A --* C does not exist. 

We consider a set of trajectories originating from the maximum point M. This set depends on one 
parameter. All the trajectories should arrive at one of the points A, B, C, and N as ~ --+ ~ .  The set of 
trajectories entering the minimum point B and the set of trajectories entering the minimum point C depend 
on one parameter as well. This implies the existence of integral curves which separate these sets and enter 
the points A and N. Thus, the structure of the slow shock wave A --+ M exists. 

We ascertain whether an integral curve from N to A with increasing ~ exists. To do this, the inequality 
F(N) > F(A) must be satisfied, which is the case if W is greater than a certain W0. In this case, the points A 
and C are close to each other, while the point N lies in the distance and, consequently, higher than A (Fig. 2). 
If W is close to Cl, the points A and M become closer and, as a result, the point A is higher than the point 
N and the integral curve from N to A. Consequently, the structure of the shock wave A --~ N does not exist. 

We now consider the situation shown in Fig. 2, by analogy with the motion of a heavy material point. 
The heavy points which leave the point N with zero velocity move along the groove and, generally, they stop 
at the minimum B or C. If the effect of friction characterized by the ratio # / V ~  is sufficiently weak, the 
heavy point performs oscillations along the groove, every time passing by the point A. If the parameters of 
the equations change, for instance, the velocity W, the number of oscillations changes and one can indicate 
the alternating intervals on the W axis which correspond to the termination of the motion at the points B and 
C. These intervals are separated by the values of W such that the heavy point under consideration attains 
neither B nor C as ~ ~ ~ .  In this case, only one possibility exists: the heavy point moves toward the unstable 
(saddle) stationary point A as ~ --+ or This means that, for the indicated values of W, the structure of the 
shock wave A --~ N exists. As shown in Fig. la, the shock wave A --~ N is a priori nonevolutionary. It becomes 
evolutionary by virtue of the fact that the specified value of the velocity at which it exists should be regarded 
as an additional condition at the discontinuity (similar to the combustion front in a gas). 

For small values of the friction coefficient, the number of oscillations of the heavy point is great and the 
slight change in W is sufficient for the point of stop to change from B to C or vice versa. Moreover, W passes 
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through a certain value which corresponds to the stoppage at the point A. In other words, for small p/v/-m, 
the distance between these values of W at the W axis, at which the structure of the shock wave A ~ N exists, 
is small. These values belong to the section which adjoins the point W = c 2 from the left (see Fig. la). 

For W > c2, the qualitative pattern of the level curves remains similar to that shown in Fig. 2; however, 
the points A and C interchange. Moreover, the structure of the fast shock wave A ~ C (the upper fast branch 
of the shock adiabat in Fig. la) always exists. The structure of the discontinuity A -* B does not exist, while 
the structure of the discontinuity A ---* M is not unique, which is typical of the dissociating nonevolutionary 
discontinuities. 

The discontinuities A ~ N for W > c 2 possess the structure if the velocity W belongs to one of the 
intervals of the W axis, the length of which tends to zero and the number tends to infinity as # ~ 0. This 
conclusion is similar to the above conclusion that the integral curve which connects the points C and N exists 
for c~- < W < c~'. However, one should keep in mind that two integral curves emanate  from the point N 
and, for this case, in order that the structure of the shock wave A ~ N be absent, it is necessary that both 
curves arrive at the point B. One can expect that this situation occurs for sufficiently small/z in the case 
where W is close to c~'. Moreover, the points C and A are close to each other, and the groove depression in 
the neighborhood of the point C is small. 

For W > Wj,  the groove has only one depression with the deepest point A. In this case, both integral 
curves come from point N to point A and the structure of the shock wave A --* N exist. 

For the case ee > 0, the set of all admissible discontinuities at the shock adiabat is shown in Fig. la  
by bold sections and points; the number of separate points and short sections depends on the parameters # 
and m determining the structure via the ratio #/v/-m. 

T h e  case  ee < 0. For small values of g and Ai, the graph of the function F(ul, u2) resembles the 
surface of the volcano's crater. If the value of W corresponds to the right vertical dashed line in Fig. lb, we 
have five stationary points of the function F(ut, u2). The pattern of the level curves is similar to that shown 
in Fig. 2; however, the direction of change of the function F from curve to curve is opposite. Moreover, the 
point M is the minimum point, B and C are the maximum points, and A and N are the saddle points. 

In the case of small values of g, where the height of the crater's walls changes slightly, among the 
trajectories emanating from the point of the lesser maximum (the point C in Figs. 2 and 3), there exist 
two bundles of trajectories which pass along the crater's ridge (the dashed curve in Figs. 2 and 3) in two 
opposite directions. When the heavy particle deviates at a certain distance from the ridge, it undergoes 
significant transversal acceleration and departs. Each of the bundles encounters an obstacle in the form of the 
neighborhood of the second minimum. Here, the bundles are separated, so that one part  goes inside, while 
another goes outside the crater. It is obvious that, in this case, the trajectories which connect the points C 
and A and which C and N exist. The first trajectory represents the structure of the slow shock wave. 

We consider the trajectories which emanate from the point of the greater maximum B. As in the 
previous case, for small G, two bundles of trajectories which go along the ridge exist. In each bundle, there is 
a trajectory which must end up at the ridge at the point A or N after a certain number of oscillations along 
the ridge. If at least one of the trajectories ends up at the point A, this implies that the structure of the slow 
shock wave A --* B exists. However, one can predict that when the velocity W changes, the intervals of its 
values can be found where both trajectories end up at the point N. In this case, there is an interval on the 
shock adiabat which does not correspond to the admissible shock waves. The length of these intervals and the 
distance between them tend to zero as #/v/-m --* 0. 

We now pass to the existence of the structure of the "intermediate" shock wave A ~ N. Obviously, 
this structure is absent for F(N) < F(A) ,  i.e., for W < W.. For increasing of W depending on //1 and U2, 
a value W0 may be found such that, for W > W0, a single trajectory going toward the crater intersects the 
ridge at the lower part in the neighborhood of the point A and goes into the external domain. For this value 
of W = W0, a trajectory N --* A, which corresponds to the structure of the intermediate shock wave A --* N, 
exists. 

The aforesaid implies the set of admissible discontinuities, which are shown in the evolution diagram 
by bold sections and the point (see Fig. lb). 
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In conclusion, we show the shock adiabat with a displayed set of admissible discontinuities in the ul, u2 
plane (Fig. 4). As in the case of electromagnetic shock waves, the set of admissible intermediate shock waves, 
which occurs for ~ > 0, leads to the nonuniqueness of the solutions of the problems. 
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